JOURNAL OF APPROXIMATION THEORY 59, 87-106 (1989)

Properties of Minors of the Wronskian
for Solutions of L,y +p(x)y=0
as Related to (k, n —k) Disfocality

GaRry D. JoNEs

Department of Mathematics and Statistics, Murray State University,
Murray, Kentucky 42071, U.S.A.

AND

MARVIN KEENER

Department of Mathematics, Oklahoma State University,
Stillwater, Oklahoma 74074, U.S.A.
Communicated by Oved Shisha

Received May 27, 1988

1. INTRODUCTION

We consider the differential equation

L,y+p(x)y=0, (1.1)

where p(x) is real valued, continuous, and of one sign on [a, ). Also L,
is assumed to be a disconjugate linear differential operator. Thus L, can be
written as a product of first order linear operators. With [7] we let

Lyy=pyy, Liy=p,(L;,_,y), i=1,.,n, (1.2)

with p,>0 and p,eC"~* for i=0,1,..,n and [*p;'(x)dx=0c0 for
i=1,.,n—1. We call L,y the ith quasi-derivative of y for i=0, 1, ..., n.

Let {ag, 2y, .., %,_;} and {Bq, B, .. B._1} be two sets of indices from
{0,1,..,n—1}. If I, = {ag, 0y, ., g _ 1} and Jo={Brs Bis1s - Bn_1}, We
consider boundary conditions on the interval [q, b] of the form

L,y(a)=0, iel, (1.3)
L;y(b)=0, ield,. (1.4)

We will introduce some terminology and give some preliminary results.
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88 JONES AND KEENER

DeriNTiON 1.1 [3]. Let o(co, .., ¢,) denote the number of sign
changes in the sequence ¢, ..., ¢, of nonzero numbers. Then for a solution y
of (1.1) that is not identically zero and a point x, we let

S(y,x*) = Hm o(Loy(t), =Ly y(t) o (=1L 3(0)

and

S(y’ X?)= tliri'l* U(Lo)’(t), Lly(t)’ A Lny(t))

Let a<x;<---<x,<b be the zeros of the quasi-derivatives
Loy, Ly, .., L, ,yof anontrivial solution y of (1.1) in [a, b], where the
same x;=c is used to denote zeros of two different quasi-derivatives L;y
and L,y if and only if L,y(c)=L,y(c) implies either L, y(c)=0 for
all j<s<k or L;y(c)=0 for all k<s<n—1 and 0<s<j With n(x))
denoting the number of consecutive (with L,y following L,_,y)
quasi-derivatives which vanish at x;, and (¢} denoting the greatest even
integer not greater than ¢, we state the following theorem.

THeorReM 1.1 [3]. Every solution y of (1.1) satisfies the condition

S(y,a*)+ Y Lalx)>+S(y, b )<n (1.5)

a<x;<b

Moreover, S(y, b~ ) and n— S(y, a*) are both even if p(x) <0 and both odd
if p(x)>0.

DerINITION 1.2. The first extremal point 8,(a) corresponding to the
boundary conditions (1.3) and (1.4) is the first value of b in (a, o) for
which there exists a nontrivial solution of (1.1), (1.3), and (1.4).

A necessary condition for the existence of 6,(a) is that n—k be even if
p(x)<0 and odd if p(x)>0. In the following we will let y be a positive
integer less than » such that

(—1)""7 p(x)>0. (1.6)

It follows that 6,(a) fails to exist, while 0, , (a) may exist.

When studying problems involving the existence of focal points (ie.,
solutions of (1.3) and (1.4) where a,=i=f,) a particular basis for the
solution space of (1.1) is often constructed. While studying problems
involving the existence of conjugate points (i.e., solutions of (1.3) and (1.4)
where a;=1, f;=n—1—1i) a basis is often constructed in a different way.

In this paper we will show that certain elements of these bases are the
same. In the process of showing that, we will study asymptotic properties
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of certain minors of the Wronskian of a basis for the solution space of
(1.1). For related work, see [4, 5, 6].

Our first step will be to construct a two parameter family of bases for the
solution space of (1.1). To that end let

=1, B:=(i— j)mod(n) for i=0,1,..,n—1, (1.7)
for j any fixed nonnegative integer less than or equal to y. Thus

Ii={0,. ., k—1} and Je()={Brs s Bu_1}-

In this case, we will write 6,(a, j) to emphasize the dependence of (1.4)
on j.
Assuming (1.7), we define a basis

J’o(x, b)’ yl(x’ b)’ ihad) ynfl(x, b) (18)

for the solution space of (1.1) as follows:
Let y, . 2,(x, b) be the essentially unique solution defined by

Liy@)=0, iel ,u{y+2n+1} (1.9)
Liy(b)=0, i€, 420 (1.10)
Let y, 2, +1(x, b) be defined by
L,y(a)=0, i€l e (1.11)
Liy(b)=0, i€, 5 .20)) (1.12)

By letting b tend to infinity along a suitable sequence (see [6]), we can
obtain another basis

Yolx)y  yi(x)s ya(x) (1.8")

for the solution space of (1.1) from (1.8). When discussing this basis, we
will use the notation of (1.8’) or that of (1.8) by saying that b= 0.

~ The following theorem is a straightforward generalization of theorems
that are in [6]. Thus the proof will be omitted. We will use the notation

Ly, Ly, - Ly,
L. . L. ) ... L. .
W(yil’yip"-,yik;j): .J+1y11 :J+1yzz : :]+1ylk

Lj+k—1yi| Lj+k71yi2 Lj+k~1yik

THEOREM 1.2. If y satisfies (1.6), then the basis (1.8) or (1.8') satisfies
the following properties:
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1. z espan{y,(x, b), ¥, 1(x, B), ey ¥, i2541(x, B)} for 0<s<
(n—y—1)/2 implies y+1<8S(z, x*)<(y+25+1) and n—(y+2s+1)<
S(z,x7)<n—(y+1) for xe(a, b), where b < o0.

1" zespan{y/x, b), y,,,(x, b), .., ¥, 1(x,b)} implies y+ 1 <
S(z,xV) and S(z, x " y<n—(y+ 1) for xe(a, b), where b < .

2' W(yy(x’ b)’yy+](x9b), '-"yy+2x+1(xsb); l)#'-ofor Xe(a,b), Where
0<igsn—2s—2

Statement (2) is valid replacing y+2s+ 1 with n— 1, where 0<i<y.

2. ZEROS OF MINORS AND EXISTENCE OF EXTREME POINTS

In this section we will consider the basis (1.8) for the solution space of
(1.1). We will assume (1.6) and (1.7) throughout.

Our purpose will be to show that the existence of 8, , ,(a, j) is implied
by the vanishing of certain minors of the Wronskian of (1.8). These results
generalize those found in [6].

Let
Ly~j+1yy(sab) Ly7j+1yy+2k+1(s7b)
Wix,s)=|" o ) (2.1)
Lij+2k+1y"/(S’b) L}'7j+2k+ly7+2k+l(s’b)
Lvyv(x’b) Lvyv+2k+l(x9b)
L"/fj-}-lyy(s’b) Ly7j+lyy+2k+1(s’b)
ui(x,s)=\L,_;,uy,(s,b) - L}v—j+2kyy+2k+l(s’b) > (22)
y}'(x’b) yy+2k+l(xab)
L-,vyy(a’b) Lyyy+2k+l(aab)
Lyfj-#ly”/(s’b) L}'7j+ly*/+2k+l(sfb)
U(x, s)=1" o » (2.3)
: Ly7j+2k+1yy(ssb) Lv—j+2k+1yy+2k+l(sab)
yv(x$b) yy+2k+l(xab)
and
L, ; 1y/(s5b) - Ly7j+1y~/+2k+1(s3b)
us(x, s)= Ly—j+2kyy(s’b) Ly—j+2kyy+2k+l(sa b)|, (2.4)
y,(x, b) o Vyrmen(X,B)
L7+lyy(a9b) Ly+1yy+2k+1(asb)
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THEOREM 2.1. Suppose for some sy€(a, b), W(a, sq) =0. Then the func-
tion x(s) defined by W(x, s)=0 where x(s,) = a is such that

dx

d_s >0.

5=50

Proof. p,,(a) (OW/0x)| 4 =L, 14z(a, So). Hence we need to show
L, , uy(a, so) #0. Suppose L, , ,u,(a, so)=0. Then there is a solution v, in
span{y,, ¥, 1, Yyeks1) With Lo (a)=0 for i=0,.,y—1,y+1;
Liv(sg)=0 for i=y—j+1,.,y—j+2k+1; and L,v(b)=0 for
i=y—j+2k+2,..,n—1—j. Since W(a, sy,)=0, there is a solution v, in
span{y,, ¥, 15 s Vyr 2415 With Livy(a)=0for i=0, ..., y; L,v,(so) =0 for
i=y—j+1,.,vy—j+2k+1; and L, (b)=0 for i=y—j+2k+2,.,
n—j—1. If v,=v,, then n=S(v,a*t)+ {(n(sg)>+S(v;, b7 )=2(r+3)+
2k +(n—2k—2—y)=n+ 1, which is not possible. If v, #v,, then there is
a linear combination z of v, and v, such that L, ;. ,,z(s)=0. Then n
2 S(z,at)+<n(se)>+S(z,b7) =2 (y+ D)+ 2k+2)+(n—-2k-2—7y)=
n+ 1. Since that is not possible, it follows that

L, uy(a, s0) #0. (2.5)

Since W(a, s,) =0, it follows that for m=1 or 2 that L,u,(a, s,)=0 for
i=0,..,7y—1; Lu,(sg,s)=0 for i=y—j+1,.,y—j+2k+1; and
Lu,(b,s,)=0 for i=y—j+2k+2,..,n—j—1. Since solutions satisfying
such boundary conditions are essentially unique,

uy(x, s0) = cuy(x, $o). (2.6)
Now the Wronskian

w(Lux(xy, o), Lius(x,, 50)) #0 for x,e(a, sy). (2.7)

Otherwise, there is a solution z in span{u,, u;} such that L,z(a, s,)=0
for i=0,.,y—1; L;z(x,,5,)=0 for i=iy, ix+1;, L,z(s0,5,)=0 for
i=y—j+1,.,y—j+2k; and L,z(b,5,)=0 for i=y—j+2k+2,..,
n—j—1. In that case n=S(z,a’)+ <{n(x))+ (n(sg)>+8(z, b7 )=
(y+1)+2+2k+(n—2k—2—y)=n+1, which is not possible.

By (2.7) and (2.6) the zeros of L, , ,u,(x, so) and L, us(x, 5,) separate
on (a, so). Now L, ui(a, so) #0 by (2.5) and (2.6), but L, u;(a, s,) =0.
Since

L,us(a, so)= — L, u/a,sg) (2.8)

it follows that L, us(a, sy) #0.
By (1.7), j<y. If j>0, we wish to show that if L, _,,  u,(x, so)
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has ¢ zeros on (a,s,), then L,_;,  u3(x,s,) has t+1 zeros there. By
(2.7) it is enough to show that if s, and s, are two consecutive zeros
of L, ;, u(x,s,) with either s,=a or s,=s, on [a,s,], then
L, ;. us(x,50) has a zero on (s,,s,). Suppose L, ;. us(x,s,)#0 for
xe(sy,s;). Then h(x)=L, ;,  u,(x, so)/L, _;, 1us(x, so) is continuous on
(s1,82). Now L, ;,  u(x,5,) has a zero of order j at x=a while
L,_ ;. us(x,s0) has a zero of order j—12>0. At x=s50, L,_,;, u(x, So)
and L,_,, us(x, so) have zeros of order 2k + 1 and 2k, respectively. Thus,
defining A(s,) = h(s,) =0, we see by I'Hospital’s rule that 4(x) is continuous
on [s, s,]. Since A(x) #0 for xe (s, 5,), # must have an extreme point at
s*1in (s, s,) at which A'(s*)=0. It follows that

L*,'—j+1u3(S*7 50) Ly—j+2ul(S*9 SO)—Lyfjﬂ—lul(S*a 5o) Ly7j+2u3(S*9 50) =0.

Thus  z(x) =us(x, so) A(s*) —u,(x,s¢) s such that L, ;, z(s*)=
L, ;,,z(s*)=0, which is not possible by (2.7). Thus L,_, ,u;(x, s¢) has
a zero in (s, $,).

By (2.7) and (28) L,us(a,s,)#0. Thus assume without loss of
generality, that L us(a, s¢) > 0. Since L,u3(a, o) =0 for i=0,1,..,y—1, it
follows that L,us(a*, s,)>0 for i=0, 1, ..., y. Since by (2.8) L, us(a, so) =
~ L, ua, s), it follows that Lu(a*,s,)<0 for i=0,1,..,y+1 If
L, ;. u(x,5so) has t zeros, which are necessarily simple in (a, s,), then
(—1)Y*' L, uy(sq, 50)>0. Because L;u(sq, 50)=0fori=y—j+1,..,
y—j+2k+ 1, it follows that

(=1 "L sy, 5)>0  for i=0,1,.,2k+1. (29)

Now, L,_,,,us(x, s,) has t+1 simple zeros in (g, s,) implies (—1)"*"
L, ;. us(sq,80)>0. Also, L;us(s,80)=0 for i=y—j+1,.,y—j+2k
implies

(1)L us(Se 5 S0) >0 for i=0,1,.,2k (2.10)
Since L, 1u5(a, So) =L, _ ;24 1 43(S0, o), it follows that

6W((I, SO)___ Ly~j+2k+2ul(s0a SO)

s nyj+2k+2(so)
and
o0W(a, s,) _ L, usa, so) _ Ly7j+2k +143(80, S¢)
0x Pv+1(a) Py+1(a)
Thus

0W(a, s,)/0s _ (—1)+**2 (Ly_ i 2+ 241(S05 S0)/0y— j+ 20 +2(50))
OW(a, so)/0x  (—1)(—1)+*+! (Ly_ 4264 143(50, So)/Py+ (a))
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Thus

dx

— 0.
ds >

s=250

If j=0, then since the zeros of L, , ;u,(x, so) and L, , ,u;5(x, s,) separate
on (a0, L, ula so)#0, L, usa s,)=0, and L, us(a,s,)#0, it
follows that the first zero of L, ,u,(x, s,) must precede the first zero of
L, u5(x, 50) on (a,s,). Now Lu(sg,50)=0 for i=y+1,..,y+2k+1
Also L, 5 o1 (5o, So) #0, otherwise n>S(uy, a* )+ {n(sy)> + S(u;, b7)
2@+ 1)+ 2k+2)+ (n—2k—-2—y)=n+1. Further, L;u,(sy, s,)=0 for
i=y+1,.,7+2k and L, 5, 1u;5(50, So) #0. Otherwise either u, and u;
are linearly dependent or there is a solution v in span{u,, u;} such that
L, 24 20(505 50) =0. Hence n>S(v,a™)+ {(n(so)) +S(, b7 )2 (y+ 1)+
2k+2)+ (n—2k—2—7y)=n+1. If u, and u, are linearly dependent then
nzS(us, at )+ {n(sg) >+ Sz, b7 )2 (y+3)+2k+(n—2k—2—y)=n+1.

Since the order of the zero of L, ,us(x, s,) is less than the order of the
zero of L, u,(x, $o) at x=s,, the last zero of L, ,u,(x, s,) is before the
last zero of L, u;5(x, so) in (a, s,). Thus if L, u,(x,s,) has ¢ zeros on
(a, 54) then so does L, , us(x, sq). Now

___dj =5W/5S=Ly+2k+2"1(505So)/Py+2k+2(So)
dS s=sp aW/ax Lv+1u2(a’ SO)/py+l(a)

Suppose, without loss of generality, that L., u,(a, s,)>0. Then
L, u(sq,5)(—1)>0. Since L, us(a, s,)#0, then n>S(u;,a*)+
{n(sg)) + Sus, b7y 2 (y+1)+2k+(n—2k—-2—-9)=n—1. Hence
S(us,a™)=y+1. Since L, u(a,5,)>0, by (2.8) L,us(a,s,)<0 from
which it follows that L., us(a®, so)>0. Hence, L, us(sq , so)(—1)'>0.
Now L, . u;(sq , 80)(—1)">0 implies L, , 5 2%;(So, So)(—1)'* ' > 0. Note
that L, (@, 50) =Ly, s 14s(50s S0)  And L, u5(sg , so)(—1)">0
implies L, 5 , 1u5(50, $o)(—1)">0. Hence

_dx =Ly+2k+2u1(so»So)/Py+2k+2(s0)
ds §=5 LY+1u2(a’ SO)/py+1(a)

_ L,y 2k 4 2uy(So, So)/Py+2k+2(So) <0.

L, ok 143(50, S0)/py+1(a)

Let

D(X,S)E W(y'y+l(x3s)7 yy+2(x5s)7 -y yy+2k+l(x’ S);'}’—_]J{' 1)

THEOREM 2.2. There is sy€(a, b) such that D(sq, b)=0 if and only if
Wia, s4)=0.
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Proof. Since y, has a zero of order i at x = a, expanding W(a, s,) by the
last row, we have W(a, s,)= — L, y,(a, b) D(s,, b).

THEOREM 2.3. Let se(a, b) and u,(x, s) be given by (2.3). Then

(1) the simple zeros of L.u,(x, s) are differentiable functions of s, and

(i) a zero of L,u,(x, s) enters (a, s) through a at s= s, if D(sy, b)=0.
No zero of L u,(x, s) leaves the interval (a, s).

Proof. Part (1) follows directly from the definition of u,(x, s) and the
implicit function theorem.

By Theorem 2.1 a zero x, of L,u,(x,s) enters (a,s) as s increases
through s,. Again by Theorem 2.1, x, cannot exit (a, s) through a as s
increases.

If j=0, then L,u,(s*, s*)#0 for a <s* <b. Otherwise, n=> S(u,,a™ )+
{n(s*)> 4+ S(u, b7 )2 (v + 1)+ (2k+2)+ [n—(y+2k+2)]=n+1. Thus
in case j=0, x, cannot exit (a, s) through s as s increases from s, to 5.

If j>0 and y<y—j+ 2k + 1, then by Rolle’s theorem there exist zeros
Xo<X;< oo <Xpgyo ; Of Lous(x,8), s L,y 2 jus(x, 5) in (a, s). Since
the zeros of L, u,(x, s) are simple, it follows that if L u,(s*, s*)=0 then
there is s, <s* so that L, 5 ,, ;uy(s;,s,)=0. Hence n>S(u,,a*)+
{n(s)>+S(uy, b )2 (p+ 1)+ 2k +2)+ [n—(y+2k+2)]=n+ 1.

If j>0 and y>y—j+2k+1, then again applying Rolle’s theorem
there exist zeros xo<x ;< -+ <Xy ., ; of Louy(x,s), L,  us(x,s), ...,
L, 52— us(x, 5)in (a, s). Since the zeros of L. u,(x, s) are simple, it follows
that if L u,(s*, s*)=0 then there is s, <s* so that L, , 5, > ;us(s,,5,)=0.
Hence 7 = S(uy,a™)+<n(s;)>+ Sy, b7) 2 (y+ 1)+ Rk+2)+{n—
(y+2k+2)]=n+1.

THEOREM 2.4. Suppose there is an sy € (a, b) such that D(sy, b)=0. Then
0., (a, j) exists on [a, b].

Proof. First suppose b< 0. Let y(x,s)=a(s)u,(x,s) be such that

n—1

"o (L;y(a, s))>=1. Then by standard compactness arguments there is a
sequence {s,} such that lim,_  s,=5 and lim,_, _ y(x, s;) = z(x) is a non-
trivial solution of (1.1) with convergence uniform on [a, b]. It follows that

L;z(a)=0 for i=0,1,..,y—1 (2.11)
and
L;z(b)=0 for i=y—j+1,.,0—1— (2.12)

By Theorem 2.3, a zero of L,u,(x,s) and thus L, y(x,s) enters (a,s)
through a at s=s,. There is a subsequence of {s,}, say {s,}, such that
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lim, | , x,(s;,)=x%€e[a, b], where x,, is the mth zero of L, u,(x,s) in
(a, s). Because of (2.11), (2.12), and (1.5) each x* must be distinct. It
follows that L. z(x}%)=0. Now x} # b for all m, otherwise if j=0, 0,(a, j)
exists, which is not possible. If j>0, applying Rolle’s theorem as in
Theorem 2.3, we see that §,(a, j—1) exists which is also impossible. If
x% =a for some m, then 0, ,(a, j) exists and we are through. If x, € (a, b)
for all m, define

Lyz,(a) - Loz,(a)
Lyszl(a) Lv——lzn(a)
z(x, 5)= Ly7j+121(5) Lv»j+lzn(s) >

Lnflszl(s) Lnrlszn(s)

z1(x) e Zy(%)

where z(, .., z, is a basis for the solution space of (1.1). Since z satisfies
(2.11) and (2.12) and such solutions are essentially unique, it follows that
z(x, b)=kz(x). It follows easily that the zeros of L,z(x, s) in (a,s) are
simple and thus differentiable functions of 5. Let x}X(s) be the simple zero
of L,z(x, 5) so that x}%(b) = x},. Normalizing z(x, 5) so that is does not con-
verge to the trivial solution as s tends to a, it follows that as s decreases
toward a, one of these zeros must exit (a, s). As above, it cannot exit
through s, thus it must exit through a and hence 8, , ,(a, ) exists in [a, b].

For the infinite case, we note that the basis {1.8’) satisfying the condi-
tions of Theorem 1.2 is of the form

yi(x)= hm yi(xa bm)a

where {b,,} diverges to infinity. Further, y;(x, b,,) and its quasi-derivatives
converge uniformly to y,(x) and its quasi-derivatives on compact intervals,
Hence

Jlim D(x, by,) = D(x) = W(p, 4 1(x)s Yy 2(X), s Py p2ieia(x)7 =+ 1),

If D(so) =0, then D’(sy) #0. Otherwise, there is a solution ue {y,,(x),
VysoX)s s Vypanes1(x)} with {n(se)) =2k +2, which is not possible by
Theorems 1.1 and 1.2. Since D(x) changes signs at s,, there is an m such
that D(x, b,,) =0 for some x¢€ (a, b,,). Thus from the finite case 0, (a, j)
exists on [a, b,,) and thus on [a, +o0).
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3. AsyMPTOTIC PROPERTIES OF MINORS AND BASES
FOR THE SOLUTION SPACE OF (1.1)

In this section we will show that certain elements of the bases (1.8') are
independent of the boundary conditions at b.
For a fixed j we will let

yo(x5 b)s )H(x’ b)» et y,,,l(X, b)

be the basis (1.8).

Choose b close enough to a so that no nontrivial solution of (1.1) has
more than n—1 quasi-derivatives that vanish on [a, b]. We replace the
basis (1.8) with

ug(x, b), u(x, b), ..., u, (x, b) (3.1)
by letting
ui(x, b)=y;(x, b) if i—y is odd
Li —jJi b1 b . .
u,(x, b) = y,(x, b) — —= RAGY) yieilx,b)  if i—y is even.

Li+1-j.Vi+1(b, b)

Since (1.1) is assumed to have no extreme point on [a, b],
Liyi1_;yiy (b, b)#0. It easily follows that (3.1) is a basis for the solution
space of (1.1).

THEOREM 3.1. Let b > a be as above. The set {L, ,u(x,b),
L, u, (xb),. L, u, (x,b)} (replacing u,(x,b) by —u,(x,b) if
necessary) is a Markov system on [a, b).

Proof. Suppose W(H.V(C, b)9 uy+ I(C’ b)’ ey u'y+k(c, b)’ Y _J) =0 for ce
[a, b). Then there is y e span{u,(x, b), u, (X, b), ..., u,, ,(x, b)} so that

L;y(a, b)=0, i=0,1,.,y—1
L,;y(c, b)=0, i=y—jy—j+1,.,y—j+k
L, y(b,b)=0, i=y+k+1—jy+k+2—j,...n—1—j

Hence (1.1) has a solution with y+(k+ 1)+ (n—y—k—1)=n vanishing
quasi-derivatives on [a, b], contrary to the hypothesis.

We next state a sequence of lemmas that are generalizations of those
found in [1]. Since the proofs are essentially the same as in [1] they will
be omitted.
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In these lemmas we will let z and
{21, 29, w0 Zn}
be admissible functions.

LeMMA 3.1. If Wiz, 25, ey 213 0) #0 and W(z,, 25, .., 2, ; i) #0, then

(W(z, ZyyZ2s s Zp_1; i))’

W(Zl’ Zy s Zpy l)

= Wiz, 25, e 215 8) W2, 245 1 245 )

Pivi Wz(zu Zyy e Zis )

LeMMA 3.2, If W(z\, 24,y Zp_1;0)#0 and W(z,, 25, .., 24, 1) #0 then
W(zy, 2350 23 DY WA2y, 20y s 215 238) = W (24, 295002513 D) W 2y, 25, ...,
Zi, 23 0) + WAz, 23, vy Zie 15 23 1) W2y, 23, ooy 245 D).

LemMMa 3.3. The set {L;z,, L;z,, .., L;z,} forms a Descartes system on
an interval I if

Wi(zi, Zk 15 ooer 23 ) >0, I<ks<m<nonl

THEOREM 3.2. Let b>a be as in Theorem 3.1. The set {L,_ ,ux,b),
L, u,,(x,0),...,L, ju,_(x,b)} (replacing u,(x,b) by —u,(x,b) if
necessary) is a Descartes system on (a, b).

Proof. We use induction. Assume {L, u,(x,b), L, u,, x0b), ..,
L, ,uy(x,b)} forms a Descartes system on (a, b) for k <n—1. We need
to show {L,_,u(xb), L, u,,(x,b),.,L, u, (x,b)} also forms a
Descartes system there. By the inductive hypothesis and Lemma 3.3, it is
enough to prove

Wux, b), ug, (x, b), ..., up . 1(x, b); y— j) >0, y<s<k+1on (qb).
(3.2)

If s=7, this follows from Theorem 3.1. If s>y, assume (3.2) holds for
smaller values of s. We apply Lemma 3.1 with the following identification:

Zy = U

Zy=Us 4y
Zm—1= Uy

Zm=Us_
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Then

<W(uk+l’ Ugy Ug 415 oy Ups V—J)>I
W(us’ Usp 1y ooy Ups usfl;y_j)

- W(u_w us+19 seey uksy—.]) W(uk+17 us> us+l’ ooy Upes usfl; y_.])
2 . ;
py—j+k—s+2W (us’ Ugy 1y s Upes usfl,'))—j)

Hence

(—1)k+1_s<W(us’ Us 15 s Upes uk+l;y—j)>l
(_l)k_s+l W(us—l’us’us+1s"'auk;y_j)

- W(usa Us 1 oo uk;y_J) W(us—l, Ugy Ug 15 vees Ups uk+1;y_.])
2 . ;
pv—j+kvs+2W (us—l’ Ugs Us 415 - uk9y—.])

X(_1)k~s+2 (_1)k—s+1.

Thus, by the inductive hypotheses

W(uxi Us 415 o5 Ups uk+l;y_j)
W(us—l’ Ugy U gy ooy U y_])

is increasing on (a, b). The denominator is positive by the inductive
hypothesis.
Let

L, u,_,,;
_ — 1+ .
Z,-=%, z=1,...,n—s.

y—j%s—1

Then as can be shown by methods as in [1. Lemma 3, p. 87]

W(us, Usp 1y ooy Upes uk+l;y_j)
W(us— 1o Uss Ug 15 e uk;y—j)

2 Z2 t Zrg2-s
py—/w—lzll py—/+12'2 p-,v—;+1z;—j+l
p}v—j+kAx+1("'(Z,1)"'), py—j+k—:+l("'(z,2)"'), py—/+k—s+l("'(z;(+2——:)"'),
1z U Zkal-s
0 pv—j+12,1 p;v~/+lz;(+l—s
0 gy jrasirC @) ) o Py ik st (Zhsr o) Y

(3.3)
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Since L, ,u, has a zero of multiplicity exactly i~y + j at x =aq, it follows
that z, has a zero of order exactly / at x =qa. Thus at x=a, where (3.3) in
general is indeterminant, the numerator of the expression following the
equal in (3.3) is zero while the denominator is nonzero down the diagonal
and zero above the diagonal. Thus, it follows that the expression following
(3.3) is zero at x =a. Since (3.3) is increasing, it is positive on (a, b).

THEOREM 3.3. Let b > abe as in Theorem 3.1. Theset {L,_;,  u,, ,(x, b),
L, joyu, o(x,b), ., L,_; u, ((x,b)} where u, for i=y+1,.,n—1is
the same as in Theorem 3.3 is a Descartes system.

Proof. Applying the proof of Theorem 3.2, {L, ;. u,,(x,b),
L, ; 4, s(x,b), .. L,_;, u, (x, b)}, possibly replacing u, with —u,, is
a Descartes system. Since the u, for i=y+ 1, .., n—1 of Theorems 3.2 and
3.3 differ by at most a sign and L,u,(a)>0fori=y+1, .., n—1, it follows
that they are exactly the same.

We now turn to the main results of this section.

THEOREM 3.4. Suppose 0, ,(a,0) fails to exist. Let {u;(x,c). i=0, ..,
n—1} be the basis (1.8), with u;(x, c) positive to the right of a. Let

L, ,_ulcc) ‘|
7+
L, uilce)”

i,(x, cy=u,x, c)— (x, c).

Let v, for i=0,1, .., n— 1 be a basis constructed as in (1.8") so that for some
sequence {c,,} diverging to oo

lim u,(x,c,)=v(x) for i#y

m— oo

lim #4(x,c,)=v,(x)

m— oo

with v; positive just to the right of a. If z.(x, b) satisfies
L;z.(a, b)=0, i=0,1,..,y—1, (3.4)
L;z(b,b)=0, i=y—j,y—j+1,.,n=2—j (3.5)
then

By =o )+ T a(b)vilx)

i=y+1

where a, , (b) <O0.

640/59/1-7
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Proof. We note that the assumption that 8, , ,(a, 0) fails to exist implies
that 6, , (a, j) fails to exist for all J [3]. Thus 4,(x, c) is well defined.
Clearly z,(x, b)=v,(x)+ X272, | a;(b) v;(x). From (3.5)
n—1

0=Lyv(b)+ Y a(b)Lvi(b) for 1=y—j, .,n=2—]

f=y+1
Thus, by Cramer’s rule

W(Uv(b)s Uy+2(b)’ s Uy l(b)’ Y _J)
W, 1(b), . v, _4(B); 7 — )

_av+l(b)=

Now consider
Wi(x, s)=W(i,(x,s), u, (X, §), ccon , _ (X, 8); 7 — J)
and

Walx, s)= Wlu, , (x, 5), u, , o, 5), s thy_1(X, 8); 7 = J)-
Now W,(x, s) is continuous in both variables and

W(v,(8), v, 4 2(b), -, v, (b)Y =) _ lim Wb, c,)
W(Uy+l(b)9 ey Un—l(b);y—j) n— W2(b’ Cn)'

—ay+1(b)=

Let s =s* be a value of s close enough to a so that no nontrivial solution
of (1.1) has more that n — 1 quasi-derivatives that vanish on [a, s*]. Then
L‘y+2r7+17ju'y+2r1+1( 5 8 )‘7&0 Let

ﬂv+2q(x, S*)

Lv+2n+lfjuv+2ﬂ(s*’ s*) ( *) (3.6)

— L .
_uy+2q(x’s ) S*, S*) uy+2n+l X, 5

ytam+ 1y yan el
and

dy+2n+1(x’S*)=uy+2n+l(x,S*) fOI' V+2'7+1<""1
Let

ﬁn—l(x’ S*)zun—l(x9 S*)'

Note that for xe(a,s*) and close enough to a,i,,,,(x, s*)>0 since
U, 4 2,(x, $*)>0. It now follows from Theorems 3.2 and 3.3 that

{L,_;a,(x,s%), L, i, (x,s%),..,L,_;a,_ (x, 5%} (3.7)
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and
{Ly—j+ldy+l(xa S*)’ Ly7j+lﬁv+2(x’ S*)’ s Ly—j+112nA1(xs S*)} (38)

are Descartes systems on (a, s*).
By (3.6) and (3.7), for a<x < s*

0< W(ﬁv+ l(x, S*)’ ﬁy+2(xa S*)a ety ﬁn—l(x5 S*)’ Y _J)= WZ(xa S*)'

Now W,(x,s) #0 for xe(a, s], a<s < oo. Otherwise there is x* € (a, 5] so
that

L.u(a)=0, i=0,1,..,y
L,u(x*)=0, y—jy—Jj+ L, .,n—2—]
contrary to the hypothesis. Thus W,(x, s)>0 for a<x<s < o0.
Now  W(i,(x*, s), u,, (X*, 8), oy tt,_1(x*,8);7—J)#0 for a<x*<
s < o0. Otherwise there 1s a solution to the boundary value problem
L;y(a)=0, i=0,1,..,y—1
L;y(x*)=0, i=y—jy—j+1,.,n—1—j
which is not possible because of the sign condition on p(x). For the same
reasons W(u, ,(x*s), .., u,_,(x* 5);7—j)#0 for a<x*<s. Thus by
(3.7) and (3.6) it follows that W(di,(x, 5), u, , 1(x, §), ..., 4, _1(x, 5); 7 — j) >0
and W(u, ,5(x, 8), s u,_y(x,5);7—j)>0 for a<x<s<oo.
For any fixed s, applying Lemma 3.1 yields
(W(uy+2(x’ S), ey Uy l(x’ S), b4 _J) W(ay(x9 S):
(Wl(x9 S)), - ( _ 1) Uyy 1(X, S), ey Uy — l(x5 S), Y _.]))
W2(x’s) pn—j——l(x) sz(x;s)

Hence, W,(x, s)/W,(x, s) is decreasing in x on (q, s).
Now

Wl(s7 S)= Ly~j'2y(s’ S) W(uy+2(s’ S), ooy u,,,,(s, S), Y _]+ 1)

Again, the sign condition on p(x) prevents Wi(u,,,(x,s), .., u,_(x,s);
y—j+1) from being zero for a<x<s<o. But again by (3.8)
W(u, 2(x, 5), ..., hy_1(x, 8); 7 — j+ 1) >0 for s near a. Thus W(u, , »(x, s), ...,
u,_(x,s);y—j+1)>0forall s>a.

There is an s>a so that L, ;i (x,5)#0 for a<x<s. If j=0 then the
existence of such a zero implies all quasi-derivatives Ly, (x, s), L,#4,(x, 5), ...,
L,_,#,(x,s) vanish on [a, s] which is not possible. If j> 0 then applying
Rolle’s theorem leads to the same contradiction.
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If for some s*, L, ;d(x* s*)=0 for some a<x*<s* x* must be a
simple zero and thus continuous as a function of 5. Thus as s moves to the
left toward a it must exit at either a or s. If the zero approaches a then we
will have a solution satisfying the boundary conditions

L,y(a)=0, i=0,..,9y
L;y(s)=0, i=y+1—j,.,n—1—]
contrary to assumptions. If the zero x* approaches s, we have a solution
of
L;y(a)=0, i=0,.,y—1
L;y(s)=0, i=y—j,wun—1—],
which is not possible because of the sign condition on p(x). It follows that

L, i(x,s)#0fora<x<s<oo.

By (3.7) L, _;i,(x,s)>0for snearaand a<x<s. Thus, L, ;i,(x,s5)>0
for all a<x<s<o. Hence W (s,5)>0. Since W,(s,s)>0 and
Wi(x, s)/W,(x, s) is decreasing as a function of x on (g, s), it follows that

Wi(x, s)/W,(x,s)>0for a<x<s. Thus
W(v,(b), v, 4 2(b); s 0,1 (8); 7 — )
W(vv+ l(b)’ o Uy l(b); 7 _j)

— llm Wl(ba Cn)
wevon Wb, c,)

_ay+l(b)=
=0.

THEOREM 3.5. Suppose 0, (a,0) fails to exist and let a,,, be as in
Theorem 3.4. Then

blinzo a,,(b)=0.
Proof. We will prove the theorem with the added hypothesis that

fim 2%

=0 for i=0,..,n—1, 3.9
X = © Livv+ l(x)

where {vy, vy, .., v,_,} are as in Theorem 3.4. We need to show

lim W(vy(x)s U.',+2(X), vy vnfl(x); Y _])=0
x> oo W(Uy+l(x)’ ey Un-l(x);y_j) .

We let

Wl(x) = W(vy(x), Uy+2(x)’ ey Uy l(x); Y _])
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and
W2(x) = W(Uy+ l(x)7 vy Up l(x); Y -])

From the proof of Theorem 3.4, W ,(x)/W,(x) is a nonnegative nonincreas-
ing function. Suppose

lim ix)

=A4>0.
x—w Walx)

Let {c¢,,}—= o and A4,=Wec,)/W,c,). Then lim, ,  4,=A4. Let
D, (x)=W,x)—A4,,W,(x). Then D,,(c,,)=0. Hence there is a solution z,,
of (1.1) in span{v, —4,,0,,,, 0,2, .., U,_; } so that

L;z,.(c,,)=0, i=y—j,y—Jj+1,.,n—2~. (3.10)

Without loss of generality, assume z,,—z in span{v,— Av, ., v, 2, .,
v,_,} where z is nontrivial.

Let x<c¢,,. Then nz=S8(z,,,x )+ S(zm cn)2S(z,,,x")+n—y—1
Thus

Sz, x*)<y+ L (3.11)
It follows by [2] that
S(z,xt)<y+ 1 (3.12)
Suppose
z=b,,(0,—Av, )+ b, o0, 0+ b, v, (3.13)

Note that b, , ; #0. Otherwise z would be in span{v, , ,, .., v,_,} and thus
S(z, x*)>=y+ 3 contrary to (3.12).

Now L,_;z,(x)#0 for a<x<c,. Otherwise there is an x;,a<x, <
¢, =S5, where L,_;z,(x,)=0. First, such a zero would have to be simple.
Otherwise, n= S(z,,, a™)+<{n(x)>+ Sz, ) Z(y+ 1) +2+[n—(y+1)]
=n+2. On the other hand, simple zeros of L, ;z, are continuous
functions of s. Letting s move toward a from the right until x, exits (q, 5)
or until s=a, we get (after normalizing) a nontrivial limit function u in
span{v,, v, 1, .., b, } With either

Lu(a)=0, for i=0,1,..,7, (3.14)
Lu(s)=0, for i=y—jy—j+1,.,n—1—} (3.15)
or

Lu(a)=0, for i=0,1,..,n—1. (3.16)
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In case (3.14), u would be in span{v,,,,v,,5,.,0,_}. But since
W (s)/W,(s)#0, uespan{v, ,,.,v, ;}. Thus, S(u,a*)+Sus" )=
y+3)+mr—y—1)=n+2.

In the case (3.15), n=S(u,a*)+ S, s )2 (y+ 1)+ (n—7y)=n+1.

The last case is impossible for nontrivial solutions.

Thus, assume without loss of generality that L, _,z,(x)>0 for

J
a<x<c,. It follows that L, ;z(x)>0 for a<x. By (3.12) and (3.13)

J

Sz, x")=y+1 for x>a. (3.17)

Hence L, ;z(x)>0 since L,_;z can have no double zeros.

If >72)7"b,, v, is nonoscillatory, then known dominance properties
give S(z, x*)>v+3 contrary to (3.17). If 72, "7 b,, v, , is oscillatory,
then since

. L, v,(x)
l y—J7y =0
T 0

y—Jitr+1

for large zeros of L, ;(37-) 7 b,,v,,,), sgn L, ;z must be opposite that
of L, ;b,,,v,,,; however, to the right of a, sgn Ly,jz.mu'st be the same
asthatof L, b, ,,v,. In that case L, ;z has a zero, which is not possible.

COROLLARY. With a;(x) as in Theorem 3.4,

lim q;(x)=0

fori=y+1,y+2,.,n—1.

Proof. Let v, and =z(x,b) be as in Theorem 3.4. Assuming

lim, _, ., (Lv,(x)/L;v,,,(x))=0, Theorem 3.5 shows that (letting b — o0)
n—1
z,(x)=v,(x)+ Y av x)=v,(x)+2z(x)
i=y+2

Now S(v,, x*)=y+ 1 while S(z, x*)=y+3 and S(z,, x*)=y + L. Thus
Li(v,(x)+z(x))>0, i=0,1,.,7y
(—1)77 Li(v,(x) + 2(x)) >0, i=y+1,.,n—1
for all large x. Hence for every &> 0, eventually

Li(ev, ,(x)+2(x))> Li(v,(x) +z(x)) >0, for i=0,1,..7
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and
(=177 Liev, 4 1(x) + 2(x)) > (= 1) 77 L (v,(x) + z(x))
>0, for i=y+1,..,n—1,

But that says that S(ev,,;+z x%)=y+1 for every £>0, which is not
possible by [2].

THEOREM 3.6. The assumption that

. L,v,(x)
lim —X——=0 (3.18
x—o Lo, () )

is not needed in Theorem 3.5 and its corollary.

Proof. To prove the theorem, we need to show a relationship between
basis elements for various values of j. Let {v, (x):i=0,..,n—1} be a basis
for the solution space of (1.1) as in Theorem 3.4; ie.,

vy ;(x)= lim v,;(x, ¢,,(/)),
where {c,(j)} diverges to infinity with m and v, ,(x, c,(j)) satisfies
(1.9)~(1.12) with b=c,,(j) and i#7. However v, ;(x, c,,(j)) satisfies
Liv, ;(x,c,(j))=0 for i=0,..,y—1 (3.19)
and
L, i(c,(j),ca(j))=0  for i=y+1—j, . ,n—1—4 (3.20)
If we assume

lim Ly (%)

x—w Ly, (x)

=0 for i=0,.,n—1, (3.21)
then by the corollary to Theorem 3.5 and Theorem 3.4
vy,j(x) = Uy,j+ l(x)'
Now
U"y+l,j+1(x)=vy+l.j(x)+zs (322)

where

n—1
z= Y by,

i=y+2
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If z is nonoscillatory, since S(z, x*)=y+ 3, by [2]

lim v~,~+1,j+1(x)= lim Uy+1,j(x):0
X = ®© z(x) X = o z(x)
Thus by (3.22) z=0. If z is oscillatory, let {x,,,} be a sequence diverging

to oo with m so that
Liz(x;,,)=0 for all m.
Then

lim Livv,j+1(xi,m) — lim Livy,j(xi,m) —0.
m— o Li”y+1,j+1(xi,m) m— o Livv+1,j(xi,m)

But by Theorem 1.2, L;v, ;. (x)/L;v,,, ;. (x) is monotone. Thus

fim L) ooy aet,
"“’mLin+1,j+1(x)

In the case j=0, (3.21) is known to hold [2]. Thus the resuit follows by
induction.
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