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1. INTRODUCTION

We consider the differential equation

(1.1 )

where p(x) is real valued, continuous, and of one sign on [a, (0). Also L n

is assumed to be a disconjugate linear differential operator. Thus L n can be
written as a product of first order linear operators. With [7J we let

Loy = PoY, i= 1, ..., n, (1.2 )

with Pi>O and PiEcn-i for i=O,I, ...,n, and fOOpi-I(X)dx=oo for
i = 1, ..., n -1. We call Liy the ith quasi-derivative of y for i = 0, 1, ..., n.

Let {lXo, IX I' ..., IXn _ d and {f3o, 131, ..., 13n_ d be two sets of indices from
{a, 1, ..., n-l}. If h= {lXo, lXI' ..., IXk-d and Jk = {13k> f3k+I' ... , f3n-l}, we
consider boundary conditions on the interval [a, bJ of the form

Liy(a) = 0,

Liy(b)=O,

(1.3)

(1.4 )

We will introduce some terminology and give some preliminary results.

87
0021-9045/8953.00

Copyright © 1989 by Academic Press. Inc.
All rights of reproduction in any form reserved.



88 JONES AND KEENER

DEFINITION 1.1 [3]. Let a(co, ..., cn) denote the number of sign
changes in the sequence Co, ..., Cn of nonzero numbers. Then for a solution y
of (1.1) that is not identically zero and a point x, we let

and

S(y,x~)= lim a(Loy(t),L1y(t), ...,Lny(t)).
t ----Jo x-

Let a:::; XI:::; ... :::; Xr :::; b be the zeros of the, quasi-derivatives
Loy, L 1 y, ..., L n-I Y of a nontrivial solution y of (1.1) in [a, b], where the
same Xi = c is used to denote zeros of two different quasi-derivatives Ljy
and Lky if and only if Ljy(c)=Lky(c) implies either LsY(c)=O for
all j:::;s:::;k or LsY(c)=O for all k:::;s:::;n-1 and O:::;s:::;j. With n(xJ
denoting the number of consecutive (with Loy following L n_ 1 y)
quasi-derivatives which vanish at Xi' and <q>denoting the greatest even
integer not greater than q, we state the following theorem.

THEOREM 1.1 [3]. Every solution y of (1.1) satisfies the condition

S(y,a+)+ L <n(xt»+S(y,b~):::;n.
a< Xr< b

(1.5 )

Moreover, S(y, b ~ ) and n - S(y, a +) are both even ifp(x) < 0 and both odd

if p(x) > O.

DEFINITION 1.2. The first extremal point lh(a) corresponding to the
boundary conditions (1.3) and (1.4) is the first value of b in (a, 00) for
which there exists a nontrivial solution of (1.1), (1.3), and (1.4).

A necessary condition for the existence of lh(a) is that n - k be even if
p(x) < 0 and odd if p(x) > O. In the following we will let}' be a positive
integer less than n such that

(_l)n~yp(x»O. (1.6)

It follows that Oy(a) fails to exist, while Oy+ I(a) may exist.
When studying problems involving the existence of focal points (i.e.,

solutions of (1.3) and (1.4) where !Xi=i=PJ a particular basis for the
solution space of (1.1) is often constructed. While studying problems
involving the existence of conjugate points (i.e., solutions of (1.3) and (1.4)
where !Xi = i, Pi = n - 1 - i) a basis is often constructed in a different way.

In this paper we will show that certain elements of these bases are the
same. In the process of showing that, we will study asymptotic properties
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of certain minors of the Wronskian of a basis for the solution space of
(1.1). For related work, see [4, 5, 6].

Our first step will be to construct a two parameter family of bases for the
solution space of (1.1). To that end let

f3i= (i - j) mod(n) for i = 0, 1, ..., n - 1, (1.7)

for j any fixed nonnegative integer less than or equal to y. Thus

I k = {O, ..., k - 1} and

In this case, we will write f)k(a, j) to emphasize the dependence of (1.4)
on}.

Assuming (1.7), we define a basis

Yo(x, b), Yl(X, b), ..., Yn-l(X, b) (1.8 )

for the solution space of (1.1) as follows:
Let YY+2~(X, b) be the essentially unique solution defined by

Liy(a)=O,

Liy(b)=O,

i E I y + 2~ U {y + 21] + 1}

i E Jy + 2~ + 2(j)·

(1.9)

(1.10)

Let yY+2~+1(X, b) be defined by

Liy(a)=O,

Liy(b) = 0,

i Ely + 2~ + 1 (1.11)

(1.12)

By letting b tend to infinity along a suitable sequence (see [6]), we can
obtain another basis

Yo(X), Yl(X), ..., (1.8')

for the solution space of (1.1) from (1.8). When discussing this basis, we
will use the notation of (1.8') or that of (1.8) by saying that b = 00 .

. The following theorem is a straightforward generalization of theorems
that are in [6]. Thus the proof will be omitted. We will use the notation

Lj Y i2

Lj + 1 Y i2

LjYik

Lj+1Y ik

THEOREM 1.2. If Y satisfies (1.6), then the basis (1.8) or (1.8') satisfies
the following properties:
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1. Z E span{yy(x, b), yy+,(x, b), ..., yY+2s+1(X, b)} for 0 ~ s <
(n-y-l)/2 implies y+l~S(z,x+)~(y+2s+1) and n-(y+2s+1)~

S(z, x ~) ~ n - (y + 1) for x E (a, b), where b ~ 00.

I'. Z E span{yy(x, b), YY+I(x, b), ... , Yn_I(X, b)} implies y + 1 ~

S(Z, x +) and S(z, x - ) ~ n - (y + 1) for x E (a, b), where b ~ CYJ.

2. W(Yy(x,b)'YY+I(x,b)'''''YY+2.,+I(x,b);i)0;60for xE(a,b), where
o~ i ~ n - 2s - 2.

Statement (2) is valid replacing y + 2s + 1 with n - 1, where 0 ~ i ~ y.

2. ZEROS OF MINORS AND EXISTENCE OF EXTREME POINTS

In this section we will consider the basis (1.8) for the solution space of
(Ll). We will assume (1.6) and (1.7) throughout.

Our purpose will be to show that the existence of f)Y+l(a,j) is implied
by the vanishing of certain minors of the Wronskian of (1.8). These results
generalize those found in [6].

Let

Ly-i+1Yy(S, b) L y_j + I Yy+2k+ I(S, b)

W(x,s)=
LY-i+2k+ly)s,b) L y_i + 2k + 1 Yy+ 2k + 1(s, b)

,

Lyyy(x,b) L Y YY+2k+I(X, b)

L/_i+IYy(s,b) L y- i +' Yy+2k+ I(S, b)

u1(x, s) = Ly_j+2kYy(S, b) L y- j +2k Yy+2k+ ,(s, b)

Yy(x, b) Yy+2k+I(X, b)
L yy,(a, b) L yYY +2k+l(a, b)

L y_i+ I Yy(s, b) L y_i + 1 Yy+ 2k + 1(s, b)

u2(x, s) =
L y- i +2k + I yy(s, b) L y- i +2k + I Yy+2k+ ,(s, b)

,

Yy(x,b) Yy+2k+ I(X, b)

and

L y_j +' Yy(s, b) L y_j + I Yy+2k+ I(S, b)

U3(X, s) = LY-i+2kYy(S, b) L y- i +2k Yy+2k+I(S, b)

yy(x, b) Yy+2k+ I(X, b)

Ly+1Yy(a,b) L y+ I Yy+2k+ I(a, b)

(2.1 )

(2.2)

(2.3 )

(2.4)
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THEOREM 2.1. Suppose for some So E (a, b), W(a, so) = O. Then the func­
tion x(s) defined by W(x, s) = 0 where x(so) = a is such that

dxl- >0
ds s~so •

Proof pY+I(a) (oWjox) I(a.so) = L y+1u2(a, so)· Hence we need to show
L y+I u2(a, so) =F O. Suppose L y+I u2(a, so) = O. Then there is a solution VI in
span{YY'YY+I'''''YY+2k+d with L;vda)=O for i=O, ...,y-l,y+l;
L;vl(so)=O for i=y-j+l, ...,y-j+2k+l; and L;vl(b)=O for
i = y - j + 2k + 2, ..., n - 1 - j. Since W(a, so) = 0, there is a solution V 2 in
span{yy, Yy+l' ..., YY+2k+d with L;v2(a)=0 for i=O, ..., y; L;v2(so)=0 for
i=y-j+l, ...,y-j+2k+l; and L;V2(b)=0 for i=y-j+2k+2, ...,
n-j-1. If VI =V2' then n~S(vl,a+)+<n(sO»+S(VI,b-)~(y+3)+

2k + (n - 2k - 2 - y) = n + 1, which is not possible. If VI =F V2, then there is
a linear combination z of VI and V2 such that Ly-j+2k+2Z(SO)=0. Then n
~ S(z,a+)+<n(so»+S(z,b-) ~ (y+l)+(2k+2)+(n-2k-2-y)=
n + 1. Since that is not possible, it follows that

(2.5)

Since W(a, so) = 0, it follows that for m = 1 or 2 that L;um(a, so) = 0 for
i=O, ...,y-l; L;um(so,so)=O for i=y-j+l, ...,y-j+2k+l; and
L;um(b, so) = 0 for i = y - j + 2k + 2, ..., n - j - 1. Since solutions satisfying
such boundary conditions are essentially unique,

(2.6)

Now the Wronskian

(2.7)

Otherwise, there is a solution z in span{u2,u3 } such that L;z(a,so)=O
for i=O, ...,y-l; L;z(xl,so)=O for i=io,io+l; L;z(so,so)=O for
i = y - j + 1, ..., y - j + 2k; and L;z(b, so) = 0 for i = y - j + 2k + 2, ...,
n-j-1. In that case n~S(z,a+)+<n(xd>+<n(so»+S(z,b-)~

(y+ 1)+2+2k+(n-2k-2-y)=n+ 1, which is not possible.
By (2.7) and (2.6) the zeros of Ly+1U1(X,So) and L y+1U3(X,So) separate

on (a, so). Now Ly+1ul(a,so),iO by (2.5) and (2.6), but L y+1u3(a,sO)=0.
Since

(2.8)

it follows that L y u3 ( a, so) =F O.
By (1.7), j~y. If j>O, we wish to show that if Ly_j+IUI(X,So)
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has (zeros on (a,so), then LY_J+IU3(X,SO) has (+1 zeros there. By
(2.7) it is enough to show that if Sl and S2 are two consecutive zeros
of L y__ j + 1U1(x, so) with either Sl = a or S2 = So on [a, so], then
L y_ j+l U3(X,SO) has a zero on (SJ,S2)' Suppose L y_ j+lU3(X,so);fO for
XE(Sl,S2)' Then h(x)=Ly_j+lUl(X, so)/Ly_ j +l U3(X, so) is continuous on
(Sl,S2)' Now Ly_j+lUl(X,So) has a zero of order j at x=a while
L y_ j+l U3(X,SO) has a zero of order j-l ~o. At x=so, Ly_j+lUl(X,SO)
and L y_ j + 1U3(X, so) have zeros of order 2k + 1 and 2k, respectively. Thus,
defining h(sd = h(S2) = 0, we see by l'Hospital's rule that h(x) is continuous
on [Sl, S2]. Since h(x) ;6°for x E (Sl, S2), h must have an extreme point at
s* in (Sl,S2) at which h'(s*)=O. It follows that

Thus z(x)=u3(x,so)h(s*)-u l(x,so) is such that Ly_j+lz(s*)=
L y_ j+2z(s*)=0, which is not possible by (2.7). Thus L y_ j +lU3(X,So) has
a zero in (s l' S 2 ).

By (2.7) and (2.8) L yu3(a, so);6 0. Thus assume without loss of
generality, that L yu3(a, so) > 0. Since L;u3(a, so) =°for i = 0, 1, ..., y - I, it
follows that L;u3(a+,so»0 for i=O, 1, ...,y. Since by (2.8) L yu3(a,so)=
-Ly+luda,so), it follows that L;ul(a+,so)<O for i=O, 1, ...,y+1. If
Ly_j+lUl(X,SO) has (zeros, which are necessarily simple in (a, so), then
(-IY+ 1 Ly-j+lUl(SO' so) > 0. Because L;ul(so, so) = °for i = Y - j + I, ...,
y - j + 2k + I, it follows that

for i=O, I, ..., 2k+ 1. (2.9)

Now, L y_ J+ 1 u3(x, so) has (+ 1 simple zeros in (a, so) implies (-1)' + 1

L y_ j+ 1 U3(SO ' so) > 0. Also, L i u3(SO' so) =°for i = Y- j + 1, ..., y - j + 2k
implies

for i = 0, I, ..., 2k. (2.10)

and

aW(a, so)

as
Ly_j+2k+2Ul(SO, so)

Py-j+2k+2(SO)

Thus

aW(a, so) _ L y+ 1u2(a, so) _ L y_ j+ 2k + 1U3(SO, so)
ax - Py+ [(a) - P

Y
+ [(a)

aW(a, so)/as _ (_I)'+2k+2 (Ly_j+2k+2Ul(SO, so)/P y-j+2k+2(SO)) °
aW(a,so)/ax- (_I)(_I)'+2k+l (Ly-J+2k+lU3(SO, so)/py+[(a)) < .
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dXI 0- >
ds s~so .
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If j = 0, then since the zeros of Ly+ 1U1(X, so) and L y+1U3(X, so) separate
on (a,so), Ly+1u1(a,so)#0, L y+1u3(a,so)=0, and L yu3(a,so)#0, it
follows that the first zero of L y +1U 1(x, so) must precede the first zero of
L y+1U3(X, so) on (a, so). Now Liu1(so, so) = 0 for i = y + 1, ..., y + 2k + 1.
Also L y+ Zk +ZU 1(so, so) # 0, otherwise n ~ S(u 1, a +) + <n(so» + S(uJ, b-)
~(y+1)+(2k+2)+(n-2k-2-y)=n+1.Further, L iu3(SO,so)=0 for
i=y+1, ...,y+2k and Ly+Zk+lU3(SO'SO)#0. Otherwise either Uz and U3
are linearly dependent or there is a solution v in span{uz, u3 } such that
Ly+Zk+Zv(so, so) = O. Hence n ~ S(v, a+) + <n(so» + S(v, b-) ~ (y + 1) +
(2k + 2) + (n - 2k - 2 - y) = n + 1. If Uz and U3 are linearly dependent then
n ~ S(U3, a+)+ <n(so» +S(U3' b-) ~ (y+ 3) +2k+ (n-2k- 2-y) = n + 1.

Since the order of the zero of L y+1U3(X, so) is less than the order of the
zero of Ly+1U1(X,So) at X=so, the last zero of Ly+1U1(X,So) is before the
last zero of L y + 1 U3(X, so) in (a, so). Thus ifLy+1U1(X, so) has t zeros on
(a, so) then so does L y+1U3(X, so). Now

dXI oW/os Ly+Zk+ZUl(SO, sO)/Py+Zk+Z(SO)
- ds s=so = oW/ox = Ly+1uz(a,sO)/pY+l(a)

Suppose, without loss of generality, that L y+1u1(a, So) > O. Then
L y+1U1(SO,so)(-1)'>0. Since L yu3(a,so)#0, then n~S(u3,a+)+

<n(so» + S(u3, b-) ~ (y + 1) + 2k + (n - 2k - 2 - y) = n - 1. Hence
S(u3,a+)=y+1. Since Ly+1u1(a,so»0, by (2.8) Lyu3(a,sO)<0 from
which it follows that L y+1U3(a+, So) > O. Hence, L y+1u3(so , so)( -1)' > O.
Now L y+1U1(so, so)( _1)t > 0 implies L y+Zk+ZUl(SO, so)( -1)' +1> O. Note
that L y+1uz(a, so) = L y+Zk+ 1U3(SO, so). And L y+1u3(so , so)( _1)t > 0
implies L y+Zk +1U3(SO,so)(-1)t>0. Hence

Ly+Zk+ZUl(SO, sO)/Py+Zk+Z(SO)

L y+lUZ(a, so)/py+l(a)

= Ly+Zk+ZUl(SO, sO)/Py+Zk+Z(SO) <0.
L y+Zk +luiso, sO)/Py+ l(a)

Let

D(x, s) == W(Y y+I(X, s), Yy+z{x, s), ..., Yy+Zk+ I(X, s); Y - j + 1).

THEOREM 2.2. There is So E (a, b) such that D(so, b) =0 if and only if
W(a, so) =0.
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Proof Since y; has a zero of order i at x = a, expanding W(a, so) by the
last row, we have W(a, so) = - L y yy(a, b) D(so, b).

THEOREM 2.3. Let SE (a, b) and U2(X, s) be given by (2.3). Then

(i) the simple zeros of L;u2(x, s) are differentiable functions of s, and

(ii) a zero of LyU2(X, s) enters (a, s) through a at S=So if D(so, b)=O.
No zero of LyU2(X, s) leaves the interval (a, s).

Proof Part (i) follows directly from the definition of u2(x, s) and the
implicit function theorem.

By Theorem 2.1 a zero X o of L yu2(x, s) enters (a, s) as s increases
through so' Again by Theorem 2.1, Xo cannot exit (a, s) through a as s
increases.

Ifj=O, then LyU2(S*,s*);60 for a<s*<b. Otherwise, n~S(u2,a+)+
<n(s*)+S(u2,b~)~(y+1)+(2k+2)+[n-(y+2k+2)]=n+1.Thus
in case j = 0, X o cannot exit (a, s) through s as s increases from So to b.

If j > 0 and y~ y - j + 2k + 1, then by Rolle's theorem there exist zeros
xo<x J< ... <X2k+2~j of L yu2(x, s), ..., LY+2k+2~jU2(X, s) in (a, s). Since
the zeros of LyU2(X,S) are simple, it follows that if L yu2(s*,s*)=0 then
there is sJ~s* so that LY+2k+2~jU2(Sj,sd=0. Hence n~S(u2,a+)+

<n(sj) + S(U2' b ~) ~ (y + 1) + (2k + 2) + [n - (y + 2k + 2)] = n + 1.
If j> 0 and y > y - j + 2k + 1, then again applying Rolle's theorem

there exist zeros xo<x~J<'" <X2k+2~j of LyU2(X,S), Ly~jU2(X,S), ...,
L y+ 2k + 2 _ jU2(X, s) in (a, s). Since the zeros of L yu2(x, s) are simple, it follows
that if L yU2(S*, s*) = 0 then there is S2 ~ s* so that L y+ 2k + 2 _ jU2(S2, S2) = O.
Hence n ~ S(u2,a+)+<n(s2)+S(u2,b-) ~ (y+1)+(2k+2)+[n­
(y + 2k + 2)] = n + 1.

THEOREM 2.4. Suppose there is an So E (a, b) such that D(so, b) = O. Then
8y +1(a,j) exists on [a,b].

Proof First suppose b < 00. Let y(x, s) = et(s) u2(x, s) be such that
2::7:d (L; y(a, S))2 = 1. Then by standard compactness arguments there is a
sequence {s;} such that limhocs;=b and lim;~G0 y(x,s;)=z(x) is a non­
trivial solution of (1.1) with convergence uniform on [a, b]. It follows that

and

L;z(a)=O

L;z(b)=O

for i = 0, 1, ... , y - 1

for i = Y - j + 1, ..., n - 1 - j.

(2.11 )

(2.12 )

By Theorem 2.3, a zero of LyU2(X, s) and thus L yy(x, s) enters (a, s)
through a at s = so' There is a subsequence of {s;}, say {s;J, such that
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limk~wxm(Sik)=x~E[a,b], where Xm is the mth zero of LyU2(X,S) in
(a, s). Because of (2.11), (2.12), and (1.5) each x~ must be distinct. It
follows that Lyz(x~)= 0. Now x~ =I b for all m, otherwise if j = 0, ()y(a, j)
exists, which is not possible. If j> 0, applying Rolle's theorem as in
Theorem 2.3, we see that ()y(a, j - 1) exists which is also impossible. If
x~ = a for some m, then ()y + j (a, j) exists and we are through. If x~ E (a, b)
for all m, define

Lozj(a) Lozn(a)

Ly_1z1(a) Ly_jzn(a)

z(x, s) == Ly_J+jz1(s) Ly_J+1zn(s)

Ln-1-Jzj(s) Ln-1-Jzn(s)

Zj(x) zn(x)

where z j, ••• , Z n is a basis for the solution space of (1.1). Since Z satisfies
(2.11) and (2.12) and such solutions are essentially unique, it follows that
z(x, b) = kz(x). It follows easily that the zeros of L;z(x, s) in (a, s) are
simple and thus differentiable functions of s. Let x~(s) be the simple zero
of Lyz(x, s) so that x~(b)=x~.Normalizing z(x, s) so that is does not con­
verge to the trivial solution as s tends to a, it follows that as s decreases
toward a, one of these zeros must exit (a, s). As above, it cannot exit
through s, thus it must exit through a and hence By+1(a,j) exists in [a, b].

For the infinite case, we note that the basis (1.8') satisfying the condi­
tions of Theorem 1.2 is of the form

Yi(X) = lim Yi(X, bm),
m~w

where {bm} diverges to infinity. Further, Yi(X, bm) and its quasi-derivatives
converge uniformly to y;(x) and its quasi-derivatives on compact intervals.
Hence

lim D(x, bm)=D(x)== W(YY+l(X), YY+2(X), ..., YY+2k+l(X); y- j+ 1).
m~w

If D(so) = 0, then D'(so) =I 0. Otherwise, there is a solution UE {yy+ j (x),
YY+2(X),,,,, YY+2k+j(X)} with <n(so»=2k+2, which is not possible by
Theorems 1.1 and 1.2. Since D(x) changes signs at So, there is an m such
that D(x, bm) =°for some x E (a, bm). Thus from the finite case By + j (a, j)
exists on [a, bm ) and thus on [a, + ex)).
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3. ASYMPTOTIC PROPERTIES OF MINORS AND BASES

FOR THE SOLUTION SPACE OF (1.1)

In this section we will show that certain elements of the bases (1.8') are
independent of the boundary conditions at b.

For a fixed j we will let

Yo(x, b), Yl(X, b), ..., Yn-l(X, b)

be the basis (1.8).
Choose b close enough to a so that no nontrivial solution of (1.1) has

more than n - 1 quasi-derivatives that vanish on [a, b]. We replace the
basis (1.8) with

Ul(X, b), ... , (3.1 )

by letting

Ui(X, b) = Yi(X, b)

( b) (b) L i + 1_j Yi(b,b) (b
UiX, =Yi X, -L . .. (bb)Yi+1 X,)

l+l-jY,+l ,

if i - Y is odd

if i - y is even.

Since (1.1) is assumed to have no extreme point on [a, b],
L i + 1 _ j Yi + 1(b, b) # 0. It easily follows that (3.1) is a basis for the solution
space of (1.1).

THEOREM 3.1. Let b > a be as above. The set {Ly_juy(x, b),
L y_j uy+1(x, b), ..., L y_ j un_1(x, b)} (replacing ui(x, b) by -ui(x, b) if
necessary) is a Markov system on [a, b).

Proof Suppose W(uy(c, b), uy+ l(C, b), ..., uy+Ac, b); y - j) =° for c E

[a, b). Then there is yEspan{uy(x, b), uy+ l(X, b), ..., UY+k(X, b)} so that

Liy(a, b)=O,

L;y(c, b)=O,

L;y(b, b)=O,

i = 0, 1, ..., y - 1

i = y - j, y - j + 1, ..., y - j + k

i = Y+ k + 1- j, y + k + 2 - j, ..., n - 1 - j.

Hence (1.1) has a solution with y + (k + 1) + (n - y - k - 1) = n vanishing
quasi-derivatives on [a, b], contrary to the hypothesis.

We next state a sequence of lemmas that are generalizations of those
found in [1]. Since the proofs are essentially the same as in [1] they will
be omitted.
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In these lemmas we will let Z and

be admissible functions.
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(
W(z, ZI, Z2' , Zk- ~; i))'

W(Zl> Z2, , Zk; I)

- W(Zl> Z2' ... , Zk-I; i) W(z, ZI, ... , Zk; i)

Pi+k W2(ZI> Z2, ..., Zk; i)

LEMMA 3.2. If W(Zl>Z2,· ..,Zk_I;i)#0 and W(Z2,Z3"",Zk;i)#0 then
W(Z2' Z3"",Zk; i) W(ZI' Z2"",Zk_I,Z;i) = W(Zl> Z2, ...,Zk_l; i) W(Z2, Z3,""
Zk> z; i)+ W(Z2, Z3, ..., Zk_l, z; i) W(ZI' Z2' ..., Zk; i).

LEMMA 3.3. The set {LiZl> L iz2, ..., Lizn} forms a Descartes system on
an interval I if

1~k~m~n on I.

THEOREM 3.2. Let b>a be as in Theorem 3.1. The set {Ly_juy(x, b),
Ly_juy+ I(X, b), ..., Ly_jUn_I(X, b)} (replacing ui(x, b) by - ui(x, b) if
necessary) is a Descartes system on (a, b).

Proof We use induction. Assume {Ly_ jUy(x, b), L y_ jUy+ 1(x, b), ...,
Ly_jUk(X,b)} forms a Descartes system on (a, b) for k<n-1. We need
to show {Ly_ jUy(x, b), L y_ jUy+ 1(x, b), ..., L y_ jUk + 1(x, b)} also forms a
Descartes system there. By the inductive hypothesis and Lemma 3.3, it is
enough to prove

W(Us(X, b), Us + 1(x, b), ..., Uk + 1(x, b); y - j) > 0, y ~ s~ k + 1 on (a, b).

(3.2)

If s = y, this follows from Theorem 3.1. If s > y, assume (3.2) holds for
smaller values of s. We apply Lemma 3.1 with the following identification:

ZI =Us

Z=Uk+I'
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(
W(Uk+I'US'US+I, ..•'Uk:y-~))'

W(US' Us+I, ... , Uk> Us-I' Y- j)

- W( US' Us + I' ..., Uk; Y- j) W( Uk + I, Us, Us + I' ..., Uk' Us - I ; Y- j)

Py - j + k - s + 2 W
2

(US' US+ I' ... , Uk> Us _ I ; Y- j)

Hence

( l)k+I-S(U/( ..))'- n'US'Us+I"",Uk>Uk+l,y-j

(_l)k-s+1 W(Us_I, US' US+ I , 00" Uk;Y- j)

- W(US' Us + I ' 00" Uk; Y- j) W(Us_1> US' Us + I ' 00" Uk> Uk+l; Y- j)

Py -j+k-s+2 W
2

(U s _ I ' US' Us + I' 00" Uk; Y- j)

x ( _ 1 )k - s + 2 ( _ 1 )k - s + I.

Thus, by the inductive hypotheses

W(US' US + I> 00" Uk' Uk+ I; Y- j)
W(U s _ l , US' Us + I , '00' Uk; Y- j)

is increasing on (a, b). The denominator is positive by the inductive
hypothesis.

Let

i= 1, 00" n - s.

Then as can be shown by methods as in [1. Lemma 3, p. 87]

W(US' US+ I' 00" Uk> Uk+l; Y- j)

W(u s _ l , US' US+ I' 00" Uk; Y- j)

ZI Zz

PY-J+IZ'1 PY-J+I Z ;

P y'- j+k -,+ t('" (z;) .. ·)' P y- J+k-H t('" (Z2)'" )'

Zk + 2 - s

P.,.-J+ lZ~_j+ 1

1 ZI

o P'-J+IZ;

Zk+ 1-5

Py-j+lZ~+l-S

(3.3 )
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Since L y_JU i has a zero of multiplicity exactly i - y + j at x = a, it follows
that Z i has a zero of order exactly i at x = a. Thus at x = a, where (3.3) in
general is indeterminant, the numerator of the expression following the
equal in (3.3) is zero while the denominator is nonzero down the diagonal
and zero above the diagonal. Thus, it follows that the expression following
(3.3) is zero at x=a. Since (3.3) is increasing, it is positive on (a, b).

THEOREM 3.3. Let b > a be as in Theorem 3.1. The set {L y_J+ 1 uy+ 1(x, b),
LY_J+IUY+2(X,b), ...,LY_J+IUn_I(X,b)} where Ui for i=y+1, ...,n-1 is
the same as in Theorem 3.3 is a Descartes system.

Proof Applying the proof of Theorem 3.2, {Ly_J+ 1 uy+ 1(x, b),
L y_J+ 1Uy+ 2(X, b), ..., L y_J+ 1 Un -I (X, b)}, possibly replacing Ui with - Ui, is
a Descartes system. Since the U i for i = Y+ 1, ..., n - 1 of Theorems 3.2 and
3.3 differ by at most a sign and Liui(a) >°for i = Y+ 1, ..., n -1, it follows
that they are exactly the same.

We now turn to the main results of this section.

THEOREM 3.4. Suppose By + 1(a, 0) fails to exist. Let {ui(x, c): i = 0, ...,
n - 1} be the basis (1.8), with ui(x, c) positive to the right of a. Let

, Ly+I_Ju/c, c) ()
U/x, c)=uy(x, c)- ( )uY+lx,c.

Ly+I_Juy+1 C, C

Let vJor i = 0, 1, ..., n - 1 be a basis constructed as in (1.8') so that for some
sequence {cm} diverging to 00

lim ui(x, cm) = Vi (x)
m~ 00

lim uy(x, cm) = vy(x)
m~ 00

for i=ly

with Vi positive just to the right of a. If Zy(x, b) satisfies

then

Lizy(a, b) = 0,

Lizy(b, b) = 0,

i = 0, 1, ..., y - 1,

i = y - j, y - j + 1, ..., n - 2 - j,

(3.4 )

(3.5)

640/59/1-7

n-I
zy(x,b)=v/x)+ L ai(b)vi(x),

i=y+ 1
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Proof We note that the assumption that (}y+ l(a, 0) fails to exist implies
that (}Y+l(a,i) fails to exist for alli [3]. Thus uy(x, c) is well defined.

Clearly Zy(x, b) = vy(x) + L7':-yl+ 1 ai(b) vi(x). From (3.5)

n-l
0= Lrvy(b) + L ai(b) Lrv;(b)

;=Y+ 1

Thus, by Cramer's rule

for t = Y - i, ..., n - 2 - j.

Now consider

and

W2(x, s) = W(u y+I(X, s), uy+2(x, s), ..., un_ 1(x, s); Y- i).

Now Wi(x, s) is continuous in both variables and

Let s = s* be a value of s close enough to a so that no nontrivial solution
of (1.1) has more that n - 1 quasi-derivatives that vanish on [a, s*]. Then
LY+2~+1-jUY+2~+I(S*, s*)#O. Let

( *) LY+2~+I_jUY+2~(S*, s*) (*) (3.6)= uy+ 2~ X, S - L (* *) uy+ 2~ + 1 X, S
y+ 2~ + I - jUy+ 2~ + 1 S ,s

and

for Y+ 21] + 1~ n - 1.

Let

Note that for x E (a, s*) and close enough to a, uy+ 2~(X, s*) > 0 since
uy+ 2~(X, s*) > O. It now follows from Theorems 3.2 and 3.3 that

{Ly_juy(x, s*), Ly_juy+l(X, s*), ..., Ly_jUn_l(X, s*)} (3.7)
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and

{Ly- J+ lUy+ I(X, s*), L y- J+ lUy+2(X, s*), ..., L y- J+ lUn-1(X, s*)} (3.8)

are Descartes systems on (a, s*).
By (3.6) and (3.7), for a < x < s*

°< W(uy+ 1(x, s*), uy+2(x, s*), ..., un- 1(x, s*); y- j) = W2(x, s*).

Now W2(x, s) ;6°for x E (a, s], a < s < 00. Otherwise there is x* E (a, s] so
that

Liu(a) = 0,

Liu(x*) = 0,

i=O, 1, ..., y

y - j, y - j + 1, ..., n - 2 - j,

contrary to the hypothesis. Thus W2(x, s»O for a<x~s< 00.

Now W(Uy(x*,S),UY+l(X*,S)"",Un_l(X*,S);y-j);60 for a<x*<
s < 00. Otherwise there is a solution to the boundary value problem

L i y(a) = 0,

L i y(x*) = 0,

i = 0, 1, ..., y - 1

i = Y- j, Y- j + 1, ..., n - 1- j,

which is not possible because of the sign condition on p(x). For the same
reasons W(UY+2(X*,S), ...,un_1(x*,s);y-j);60 for a<x*~s. Thus by
(3.7) and (3.6) it follows that W(uy(x, s), uy+ I(X, s), ..., Un _ 1(X, s); Y- j) > °
and W(uy+2(x, s), ..., un_1(x, s); Y- j) >°for a <x ~s < 00.

For any fixed s, applying Lemma 3.1 yields

(W(UY+2(X, s), , Un-l(X, s); Y- j) W(uy(x, s),

(
WI (x, S))' = (-1) UY+ l(X, s), , Un_I(X, s); Y- j))
W2(x, s) Pn-J-l(X) Wi(x, s)

Hence, W1(x, s)/W2(x, s) is decreasing in x on (a, s).
Now

W 1(s, s) = L y_JUY(s, s) W(uy+2(s, s), ..., un_1(s, s); Y- j + 1).

Again, the sign condition on p(x) prevents W(uY+2(x,s), ...,un_dx,s);
y - j + 1) from being zero for a < x ~ s < 00. But again by (3.8)
W(uy+2(x, s), ..., un_1(x, s); Y- j + 1) > °for s near a. Thus W(uy+2(x, s), ...,
Un _ 1(X, s); y - j + 1) >°for all s > a.

There is an s>a so that L y_Juy(x,s);60 for a<x<s. Ifj=O then the
existence of such a zero implies all quasi-derivatives Louy(x, s), L1uy(x, s), ...,
Ln_1uy(x,s) vanish on [a,s] which is not possible. Ifj>O then applying
Rolle's theorem leads to the same contradiction.
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If for some s*, LY_i1y(x*,s*)=0 for some a<x*<s*, x* must be a
simple zero and thus continuous as a function of s. Thus as s moves to the
left toward a it must exit at either a or s. If the zero approaches a then we
will have a solution satisfying the boundary conditions

L i y(a) = 0,

L i y(s) = 0,

i=O, ..., Y

i = Y+ 1- j, ... , n - 1- j,

contrary to assumptions. If the zero x* approaches s, we have a solution
of

L i y(a) = 0,

L i y(s) = 0,

i= 0, ..., y-l

i = y - j, ..., n - 1- j,

which is not possible because of the sign condition on p(x). It follows that
Ly_ jUy(x, s) # 0 for a < x < s < 00.

By (3.7) Ly_juy(x, s) >0 for s near a and a <x ~s. Thus, Ly_juy(x, s) > 0
for all a < x ~ s < 00. Hence WI (s, s) > O. Since W2(s, s) > 0 and
WI(x, s)/W2(x, s) is decreasing as a function of x on (a, s), it follows that
WI(x, s)/W2(x, s) > 0 for a < x < s. Thus

THEOREM 3.5. Suppose ey+ I(a, 0) fails to exist and let ay+I be as in
Theorem 3.4. Then

lim ay+ db) = O.
b~ 00

Proof We will prove the theorem with the added hypothesis that

for i = 0, ... , n - 1, (3.9)

where {va, VI' ... , vn-d are as in Theorem 3.4. We need to show

I
· W(Vy(X),VY+2(X),,,,,Vn_I(X);y-j) 0
1m = .

x~oo W(vy+1(x),,,,,Vn_I(X);y-j)

We let
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From the proof of Theorem 3.4, W I (X)jW2(x) is a nonnegative nonincreas­
ing function. Suppose

Let {cm}----+oo and Am=WI(Cm)/W2(Cm)' Then limm~ooAm=A. Let
Dm(x)= W I(x)-A mW2(x). Then Dm(cm)=O. Hence there is a solution Zm
of (1.1) in span{vy-Amvy+ l , VY +2' ..., vn-d so that

i = Y- j, Y- j + 1, ..., n - 2 - j. (3.10)

Without loss of generality, assume Zm----+Z in span{vy-AvY+ b vy+2, ...,
vn - l } where Z is nontrivial.

Let x<cm. Then n~S(zm,x+)+S(zm,c';;)~S(zm,x+)+n-y-1.

Thus

(3.11 )

It follows by [2] that

(3.12 )

Suppose

Z=bY+I(Vy-AvY+d+bY+2VY+2+'" +bn-lvn- l . (3.13)

Note that by + I :;6 O. Otherwise Z would be in span {v y+ 2' ... , Vn_ d and thus
S(z, x+) ~ Y+ 3 contrary to (3.12).

Now L y_ jzm(x):;60 for a<x<cm. Otherwise there is an xl,a<xl <
Cm=S, where Ly_jzm(xd=O. First, such a zero would have to be simple.
Otherwise, n ~ S(zm, a+)+ <n(x l ) +S(zm, c,;;) ~ (y+ 1) +2+ [n- (y+ 1)]
=n + 2. On the other hand, simple zeros of L y_ jZm are continuous
functions of s. Letting s move toward a from the right until Xl exits (a, s)
or until s = a, we get (after normalizing) a nontrivial limit function u in
span{vy, vY+I' ..., Vn-l} with either

or

Lju(a)=O,

Lju(s) =0,

for i=O, 1, ... , y,

for i = Y - j, Y - j + 1, ..., n - 1 - j,

(3.14)

(3.15)

for i = 0, 1, ..., n - 1. (3.16 )
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In case (3.14), u would be in span{vY+l,VY+2"",vn_d. But since
W1(S)/W2(s);6 0, U E span {vY+2' ..., Vn~ d. Thus, S(u, a+) + S(u, s-) ~
(y + 3) + (n - y - 1) = n + 2.

In the case (3.15), n ~ S(u, a +) + S(u, s ~) ~ (y + 1) + (n - y) = n + 1.
The last case is impossible for nontrivial solutions.
Thus, assume without loss of generality that Ly_jzm(x»O for

a<x<cm. It follows that Ly~jz(x)~O for a~x. By (3.12) and (3.13)

for x>a. (3.17 )

Hence L y~ jZ(x) > °since L y_ jZ can have no double zeros.
If I7::1- yby+ivy+i is nonoscillatory, then known dominance properties

give S(z,x+)~y+3 contrary to (3.17). IfI7::1~YbY+ivY+i is oscillatory,
then since

for large zeros of Ly~j(I7::1-yby+ivy+J, sgn Ly~jz must be opposite that
of L y_ jby+ IVy + 1; however, to the right of a, sgn L y~ jZ must be the same
as that of L y_ jby+ 1Vy. In that case L y_ jZ has a zero, which is not possible.

COROLLARY. With ai(x) as in Theorem 3.4,

X -Jo 00

for i = Y+ 1, Y+ 2, ..., n - 1.

Proof Let Vi and Zy(x, b) be as in Theorem 3.4. Assuming
lim<~ 00 (Livy(x)/Liv y+l(X)) = 0, Theorem 3.5 shows that (letting b -+ <Xl)

n~l

Zy(x) = vy(x) + L aivi(x) == vy(x) + z(x).
i= Y + 2

Li(vy(x) + z(x)) > 0,

(-1 r~y Li(vy(x) + z(x)) > 0,

i = 0, 1, ..., Y

i=y+l, ...,n-l.

for all large x. Hence for every e > 0, eventually

for i = 0, 1, ..., Y
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(-1 )i- y L;(8Vy+I(X) + z(x)) > (-1 )i- y Li(vy(x) + z(x))

> 0, for i = Y+ 1, ..., n - 1.
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But that says that S(wy+l +z,x+)=y+l for every 8>0, which is not
possible by [2].

THEOREM 3.6. The assumption that

(3.18 )

is not needed in Theorem 3.5 and its corollary.

Proof To prove the theorem, we need to show a relationship between
basis elements for various values of}. Let {vi,j(x): i=O, ..., n-l} be a basis
for the solution space of (1.1) as in Theorem 3.4; i,e.,

Vi,j(X) = lim Vi,j(x, cmU)),
m~ 00

where {cmU)} diverges to infinity with m and Vi,j(x, cmU)) satisfies
(1.9)-(1.12) with b=cmU) and i=f.y. However Vy,j(x, cmU)) satisfies

for i = 0, ..., y - 1 (3.19)

and

L;Vy,j(cmU), cmU)) =° for i = y + 1 - }, ..., n - 1 - }.

If we assume

11'm Livy,j(x) = ° ~ ° 1lor i = , ..., n - ,
x~ 00 Livy+I,j(x)

then by the corollary to Theorem 3.5 and Theorem 3.4

Vy,j(X) = Vy,j+ I (x).

Now

where

n-l

Z= I biVi,j'
i~y+2

(3.20)

(3.21 )

(3.22)
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If z is nonoscillatory, since S(z, x +) ~ Y+ 3, by [2]

lim VY'+l,j+l(X)= lim vy+1,j(x)=0,
x~ 00 z(x) x~ 00 z(x)

Thus by (3.22) z=O. If z is oscillatory, let {xi,m} be a sequence diverging
to 00 with m so that

for all m.

Then

i = 0, 1, ..., n - 1.

But by Theorem 1.2, L;Vy,j+l(X)/L;v'I +1,j+l(X) is monotone. Thus

1
· L;vy,j+ l(X) 0
1m =

x~ 00 L;v y+l,j+ l(X) ,

In the case j = 0, (3.21) is known to hold [2]. Thus the result follows by
induction.
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